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ABSTRACT
Anthropomorphic robots, or robots with human-like appearance
features such as eyes, hands, or faces, have drawn considerable
attention in recent years. To date, what makes a robot appear
human-like has been driven by designers’ and researchers’ intu-
itions, because a systematic understanding of the range, variety,
and relationships among constituent features of anthropomorphic
robots is lacking. To fill this gap, we introduce the ABOT (Anthro-
pomorphic roBOT) Database—a collection of 200 images of real-
world robots with one or more human-like appearance features
(http://www.abotdatabase.info). Harnessing this database, Study 1
uncovered four distinct appearance dimensions (i.e., bundles of fea-
tures) that characterize a wide spectrum of anthropomorphic robots
and Study 2 identified the dimensions and specific features that
were most predictive of robots’ perceived human-likeness. With
data from both studies, we then created an online estimation tool
to help researchers predict how human-like a new robot will be
perceived given the presence of various appearance features. The
present research sheds new light on what makes a robot look hu-
man, and makes publicly accessible a powerful new tool for future
research on robots’ human-likeness.

CCS CONCEPTS
• Applied computing → Psychology;

KEYWORDS
robot database, anthropomorphic robots, human-likeness, social
robots

ACM Reference Format:
Elizabeth Phillips, Xuan Zhao, Daniel Ullman, and Bertram F. Malle. 2018.
What is Human-like?: Decomposing Robots’ Human-like Appearance Using
the Anthropomorphic roBOT (ABOT) Database. In HRI ’18: 2018 ACM/IEEE
International Conference onHuman-Robot Interaction, March 5–8, 2018, Chicago,
IL, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3171221.
3171268

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HRI ’18, March 5–8, 2018, Chicago, IL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4953-6/18/03. . . $15.00
https://doi.org/10.1145/3171221.3171268

1 INTRODUCTION
Robots are moving out of the realm of dull, dirty, and dangerous
tasks and are increasingly taking on social tasks in everyday life [34].
They are beginning to interact with people in homes, workplaces,
and other public spaces. Because many of the people interacting
with these robots will be novice users with few prior experiences,
their initial impressions are likely to be intuitively formed based
on the robot’s appearance.

Many current social robots have human appearance features
such as eyes, hands, or faces. Although considerable research has
investigated people’s responses to human-like robots [16, 21, 29],
there is very little systematic understanding of what makes a robot
seem human-like. In the current paper, we introduce a tool for
the systematic study of robots’ human-like appearance—the ABOT
(Anthropomorphic roBOT) Database. ABOT provides researchers
and designers with images of 200 real-world anthropomorphic
robots built for research or commercial purposes, and it accumulates
data on people’s perceptions of this wide variety of robots.

In addition, this paper presents two empirical studies that used
the ABOT Database to examine what constitutes people’s percep-
tion of a robot’s human-likeness. Specifically, in the first study, we
surveyed laypeople’s (N = 1,140) judgments of whether various
appearance features were present in each of the 200 robots in the
ABOT database. A Principal Components Analysis (PCA) uncovered
four distinct appearance dimensions (i.e., bundles of features) of
human-like robots: (1) Surface Look (eyelashes, head hair, skin, gen-
deredness, nose, eyebrows, apparel), (2) Body-Manipulators (hands,
arms, torso, fingers, legs), (3) Facial Features (face, eyes, head,
mouth), and (4) Mechanical Locomotion (wheels, treads/tracks).
In the second study, we surveyed another 100 participants to assess
their perceptions of each robot’s overall physical human-likeness.
Using multiple regression analyses, we were able to predict robots’
perceived human-likeness from the presence of specific appearance
features.

On the basis of these data we developed a tool available on the
ABOT website that predicts how human-like a new robot will be
perceived as a function of its specific appearance features.

2 BACKGROUND
2.1 Anthropomorphic Appearance as a

Cornerstone of HRI Research
The psychological effects of robot appearance on human perceivers
is a widely studied research topic in the field of human-robot inter-
action (HRI). Numerous studies have demonstrated that a robot’s
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appearance may considerably influence people’s perceptions of its
intelligence [18, 31], sociability [28], likability [7, 22], credibility [4],
and submissiveness [35], among other characteristics and traits.

Even though robots, in theory, can take on any physical form,
those modeled after humans have been shown to be particularly
influential. For example, research by Krach et al. [20] reported that
people experienced more fun interacting with increasingly human-
like robotic partners, and Broadbent et al. [3] reported that users
preferred a healthcare robot that displayed a human face over one
without a human face. Other studies have similarly found that as
a robot appears more human-like, people are more likely to take
advice from the robot [28], take the robot’s visual perspective [38],
empathize with the robot [29], and even expect the robot to make
moral decisions that are similar to those made by humans [21]. Such
reactions may result from people attributing more mind to human-
like robots [1, 20], as well as inferring positive characteristics such
as being alive, sociable, and amiable [3]. Other researchers have
argued that robots that resemble humans provide people with a
sense of familiarity [16, 24], which may ease social acceptance [12].

At the same time, researchers have warned of certain risks asso-
ciated with robots’ human-like appearance. To start with, highly
anthropomorphic robots may lead people to form expectations
about capabilities that robots might not fulfill [1, 12, 26]. When
those expectations are violated, people may lower their assess-
ments of the robot [25], discontinue relying on the robot [19], and,
in some cases, stop interacting with the robot altogether [9]. Fur-
thermore, people may have aversive affective responses to highly
human-like robots. For example, the “Uncanny Valley” hypothesis
suggests that a robot’s imperfect human-likeness can evoke eerie
feelings in human perceivers [5, 22, 24, 32]. Other researchers have
proposed that robots with a high degree of human-likeness may
blur the human-robot boundary and undermine human uniqueness,
leading people to perceive robots as a threat [15].

In sum, human-likeness in robots is undoubtedly powerful, yet
it may not be universally desirable and requires careful assessment
and consideration. Thus, it is necessary to develop a systematic
understanding of robots with human-like appearance. For example,
what are the features that make up anthropomorphic robots? Can
these features be organized into a smaller number of underlying
dimensions? And which features most strongly predict robots’ per-
ceived degree of human-likeness? Exploring these questions will
fill important knowledge gaps and provide insight into the nuances
of anthropomorphism in robots.

2.2 The Need for a Systematic Approach and
Standardized Measures

As the number of anthropomorphic robots in research labs and
on the commercial market steadily increases, the psychological
effects of human-like robot appearance has drawn considerable
attention from the research community and piqued public interest.
However, exactly what constitutes human-likeness in robots re-
mains vague and underspecified. There is currently no systematic,
evidence-based approach for mapping robots on a continuum of
perceived human-likeness. Consequently, researchers and design-
ers are typically forced to rely on heuristics and intuitions when
selecting human-like robots to include in studies or manipulating

human-like features in robot design. This approach has suffered
from several problems.

First, because a quantitative system to describe the degree of
human-likeness in different robots is currently lacking, compar-
ing research findings across studies has been challenging. So far,
the most common practice has been to group robots into several
broad categories based on their appearances, such as mechanical,
humanoid, or android (e.g., [15, 20, 29, 30]). However, robots that
share the same label across different studies may actually differ
dramatically in their degree of human-likeness. For instance, com-
pare the robots—all characterized as “humanoid”—in the following
studies [23, 32, 35] (see Figure 1). Each of them was chosen as the
“prototype” humanoid robot in their respective studies, yet it is
unclear whether human perceivers would actually consider them
to be equally human-like. A precise metric is therefore needed to
compare different robots on a common scale and allow researchers
to replicate findings with robots of equivalent human-likeness.

Second, even when researchers assess people’s impressions of a
robot’s appearance quantitatively, they typically treat the concept
of “human-likeness” as unidimensional. However, as illustrated by
the three humanoid robots in Figure 1, human-likeness may present
itself through different features. The robot in Stenzel et al. [33] has
a head with exposed mechanics and no specific face contour, yet
it has arms and hands. In contrast, the robot in Wiese et al. [36]
consists of only a head with detailed human-like eyes, eyebrows,
and a prominent mouth, yet exposed actuators without a smooth
contour. Still different, the robot in Meltzoff et al. [23] has a clearly
defined box-shaped head, a face with dark circles representing its
eyes, a pointed structure representing its nose, two arms, and two
hands with five fingers each. Each of these robots has been shown
to create distinct psychological effects on human perceivers, but

Figure 1: Robots characterized as “humanoid” in (a) Stenzel
et al. [33], (b) Wiese et al. [36], and (c) Meltzoff et al. [23].
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we cannot tell whether these effects are all due to a broad human-
likeness quality or due to specific features that make up a particular
robot’s human-likeness.

Third, when studying the effects of robot appearance, researchers
have tended to limit themselves to robots that are either commer-
cially successful (e.g., Nao, Robovie) or conveniently available to
specific research groups (e.g., Kismet, Pearl). Although relying on
only a few robots is likely a result of practical limitations, these
practices could lead researchers to ignore the wide variety of ex-
tant robots and the nuanced differences in their appearances. Con-
clusions about the psychological effects of human-likeness may
therefore not be generalizable to a more diverse collection of an-
thropomorphic robots.

By identifying the broad spectrum and specific features of robots’
human-like appearance, a few studies have made progress in over-
coming some of these problems. For instance, work by DiSalvo
et al. [11] examined how features of robotic heads contributed to
their perceived human-likeness. However, this work was limited to
robot heads and included only 48 low-resolution images that came
from research labs, commercial companies, or fictional depictions
of robots in popular media. Mathur et al. [22] used 80 images of
robots, but the images were also restricted to heads, and the repre-
sentativeness of the image selection is unknown. A study by von
der Pütten and Krämer [35] collected standardized full-body im-
ages of 40 anthropomorphic robots but focused on clustering robots
by their familiarity and likeability, rather than by the presence of
human-like appearance features. In addition, past projects have
not made their robot images and corresponding ratings publicly
available, thus limiting opportunities to conduct further research
based on these data.

3 THE ABOT DATABASE
To address the above limitations and pave the way for more system-
atic, generalizable, and reproducible research on robots’ human-
like appearance, we created the ABOT (Anthropomorphic roBOT)
Database and corresponding website. This project offers three ben-
efits. First, it provides a survey of the broad landscape of anthro-
pomorphic robots—indeed, the largest repository of robots with
human-like features to date. Second, the ABOT Database provides
standardized images of robots and an expanding dataset of people’s
perceptions of these robots, both publicly accessible for future re-
search. Third, research using the ABOT Database will help deepen
our understanding of what makes a robot look human. As a first step
in this direction, we report two empirical studies that identify dis-
tinct dimensions of robot appearance and illuminate which of these
dimensions ground people’s perception of robots’ overall human-
likeness. In addition, we offer the Human-Likeness Estimator—a
web-based linear equation that predicts how human-like a new ro-
bot will be perceived, based on the judged presence of a diagnostic
set of appearance features.

We provide the aforementioned images, datasets, and tool on
our ABOT Database website (http://www.abotdatabase.info/). The
development of the database is described next.

3.1 Inclusion of Robots
In the first step to create the most extensive database of images of
extant human-like robots, we set out to gather as many robots as
possible that varied in both number and type of human-like appear-
ance features. These robots were identified from multiple sources,
including academic outlets (e.g., journal publications, conference
proceedings), technology-focused media (e.g., online magazines,
newsletters, blogs), websites of robotics companies and university
laboratories, online robotics communities and discussion forums,
and general Google searches. In addition, to identify robots that
had not previously received wide media attention, we reached out
to robotics researchers via robotics community listserves (e.g., HRI-
ACM, Robotics Worldwide) to solicit images of robots. From this
search and solicitation process between January 2017 and April
2017, we generated an initial image collection of 269 real-world
robots with one or more plausible human-like features.

Next, we reviewed the collection of robots and excluded those
whose appearance did not notably differ between versions (e.g.,
Cosero, Dynamaid) or had already been represented by other highly
similar robots (e.g., several robots developed for soccer competi-
tions). We also excluded robots that closely resembled animals.
Then we reviewed the robot images and tried to ensure that at
least one photograph of each robot could meet the following image
standards: had no visual obstruction or motion blur, presented no
other robots or humans, depicted the robot’s whole body (except for
android robots that could only be photographed sitting down), and
was in color. When no satisfying images of a particular robot could
be found, we often reached out to robot developers directly for their
assistance. A robot was excluded only when all our attempts to
obtain a photograph meeting our standards had failed. Using this
procedure, we reduced our collection to 200 robots.

3.2 Image Selection and Editing
At this stage, most robots were represented in multiple images
depicted from different angles and in various contexts. As a result,
we identified the best image of each robot considering both image
resolution and whether the robot body was presented in a standing,
neutral, forward-facing posture (whenever available) with a neutral
or mildly positive facial expression. Because many photographs
were taken against cluttered backgrounds, our research team then
edited those images using Adobe Photoshop to show all robots
against transparent, white, or light-colored backgrounds.

4 STUDY 1: PRESENCE OF HUMAN-LIKE
FEATURES AND HIGH-LEVEL DIMENSIONS

Study 1 took a bottom-up, feature-based approach to analyzing
robot appearance. We aimed to document the human-like features
present across anthropomorphic robots and use these data to iden-
tify underlying relationships among the features—that is, bundles
of features that tend to co-occur in anthropomorphic robots. We
expected that these bundles would reveal a smaller number of un-
derlying dimensions that characterize the physical appearance of
human-like robots. Rather than relying on experts’ judgments, we
asked laypeople to judge the presence or absence of 19 appearance
features across robots in the ABOT Database.
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4.1 Method
4.1.1 Participants. 1,140 participants were recruited for Study

1 via Amazon’s Mechanical Turk crowdsourcing website (mTurk).
Due to technical issues, data from 8 participants were not recorded.
This resulted in data recorded from 1,132 participants (501 males,
619 females, 12 unreported) with ages ranging from 18 to 81 (M =
36.07, SD = 11.68, 4 unreported). Participants received $0.50 in com-
pensation for the 5-minute study, which was approved by Brown
University’s Institutional Review Board (IRB).

4.1.2 Selecting and defining appearance features. To identify
appearance features common across our database of robots, we
developed a collection of possible robot appearance features (both
human-like and non-human-like). We drew on a related coding
scheme developed in [14], but we removed several categories such
as “assumed purpose,” ending up with 29 features in our initial
feature collection.

In a pilot study, two independent raters (undergraduate research
assistants) judged all robot images for the presence or absence
of each feature in the collection. In light of their judgments, we
eliminated 10 features that were rare, redundant, or too equivo-
cal to be reliably distinguished (e.g., wings, digital vs. physical
faces, eyelids, ears), resulting in a collection of 19 features to be
used in the first study. In addition to human-like features such as
eyes, head, and hands, the non-human-like features of wheels and
treads/tracks were also included because locomotion is an impor-
tant source of variation in people’s imagined representations of
robots [27]. Further, raters in the pilot study sometimes differed in
how they interpreted human-like features in robots, so we decided
to offer definitions of each feature to participants in the primary
study. We began with relevant definitions for the features from the
Oxford English and Merriam Webster’s dictionaries. In adapting
these definitions, we focused on retaining the human instantiation
of the feature while removing descriptions of biological functions
inapplicable to robots. For instance, the definition of mouth did not
emphasize the intake of food or production of speech (see Table 1).

4.1.3 Design. Each of the 200 images of robots was randomly
assigned to one of four blocks, consisting of 50 images each. When
participants entered the study, they were randomly assigned to
one of these four blocks and to one of the 19 appearance features
(e.g., eyes); thus, they judged whether the given feature was present
for each of the 50 robots in the assigned block. In addition, each
participant also judged whether that same feature was present in
eight images of humans (varying in age, gender, and ethnicity) and
eight images of featureless smart home devices (e.g., the Amazon
Echo, the Google Home, the Apple HomePod). These 16 additional
images were used to establish clear anchors and to detect possibly
confused or careless raters (e.g., claiming that images of humans
did not have eyes or that featureless devices had arms). In total,
each participant rated 66 images of robots, humans, and featureless
devices on one of the 19 appearance features, with the order of
presentation of images randomized for each participant.We planned
to assign approximately fifteen judges to each robot in each block
on each feature, requiring a total sample of N = 1,140 (15 raters x
19 features x 4 blocks of robots).

Table 1: Collection of appearance features and associated
definitions in Study 1.

Feature: Definition
Apparel: Materials worn temporarily to cover the

body.
Arm: Upper limb typically used for manipulating

objects.
Eye: A round or oval shaped form that often gath-

ers visual information.
Eyebrow: A line above the eye usually consisting of

hair.
Eyelashes: Threadlike filaments that surround the eye-

lid.
Face: The front part of the head, which may con-

tain features such as eyes, nose, or mouth.
Finger: Each of a number of slender jointed parts

connected to the hand.
Genderedness: Features of appearance that can indicate bio-

logical sex, or the social categories of being
male or female.

Gripper: The claw-like terminal part of an appendage
used for grasping and manipulating objects.
(A claw-like gripper is not a hand).

Hand: The terminal part of an arm, typically con-
nected to the arm by a wrist. A hand is nor-
mally used for grasping, manipulating, or ges-
turing. (A claw-like gripper is not a hand).

Head: The uppermost part of a body, typically con-
nected to the torso by a neck. The head may
contain facial features such as the mouth,
eyes, or nose.

Head hair: A collection of threadlike filaments on the
head.

Leg: Lower limb used for movement over ground.
Mouth: A large opening located on the lower part of

the face.
Nose: A projected feature of the face above the

mouth.
Skin: A thin layer of tissue covering almost the

entire body.
Torso: The trunk or middle part of the body (minus

the limbs and head).
Treads/Tracks: Moving bands that transport things like

tanks over rough terrain. They are sometimes
called tank treads or caterpillar treads.

Wheel: A round device that rolls on the ground and
transports an entity over surfaces.

4.1.4 Procedure. After reviewing the informed consent form,
participants learned that the study investigated how people perceive
the appearance of robots and other entities. They were provided
with the definition of one of the features as shown in Table 1, and
they judged whether the entities in each of the 66 images possessed
that feature by clicking “yes” or “no.”
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Participants were given unlimited time to judge whether or
not the given feature was present in each of the images. Halfway
through the task, participants received a short (approximately 10-
second) break. During the break, participants were reminded of the
relevant feature definition. At the end of the study, participants
completed a brief demographic questionnaire about age, gender,
and native language, and allowed participants to provide feedback
about the study. Once complete, participants received a payment
code. The entire study took approximately 5 minutes to complete.

4.2 Results
4.2.1 Data screening and rater reliability. We first identified par-

ticipants who warranted exclusion by at least one of two criteria:
they marked three or more of the 16 “catch trials” (additional im-
ages of humans and featureless devices) in the obviously incorrect
way; or their profile of responses substantially deviated from the
group average. In analogy to item-total correlations (riT ) in psy-
chometric test analyses, we computed correlations between each
rater’s judgments (across a block of 50 robots) with the average of
the remaining raters’ judgments in the same block and for the same
feature, rrG . Just as riT < .30 typically marks items that measure
something other than the scale as a whole and should be eliminated
from the scale [10], we set rrG < .30 to identify raters that did not
perform the same judgment task as the group as a whole and should
likewise be eliminated from remaining analyses. Using these two
criteria, we eliminated 73 out of 1132 raters. All reported analyses
are based on data obtained from the remaining 1,059 raters. Techni-
cal issues caused data loss for 2 of the robots, so these 1,059 raters
judged 198 robots in total.

Next we computed inter-rater reliabilities, using a variant of
Cohen’s kappa (κ) [8]. The original κ was intended to correct for
chance agreement among raters, but it is known to be misleading
when marginal response distributions are extreme [6]. Several of
our data vectors have such extreme distributions (e.g., when al-
most all participants agree that most robots have a torso or that
very few robots have eyebrows). Several corrected κ computations
have been proposed, and we selected Gwet’s AC1 measure, derived
mathematically and supported by Monte Carlo simulations [17, 37].
The inter-rater reliabilities for the 19 features were generally high,
average AC1 = 0.71, ranging from 0.48 (treads) to 0.89 (headhair),
with only three below 0.60. One feature, gripper, was problematic,
both because of its lower reliability for robots (AC1 = 0.50) and be-
cause 22 out of 60 raters indicated that human images displayed a
“gripper.” Indeed, numerous participants expressed confusion over
the distinction between grippers and hands or fingers. For these
reasons, we excluded the gripper feature from further analyses.

4.2.2 Feature-present scores. We computed feature-present scores
by calculating the proportion of raters who endorsed the presence
of a given feature for a given robot. For example, if 13 out of 15
raters indicated the presence of the feature “head” on a given robot,
this robot’s feature-present score for “head” would be 0.87. Thus,
each robot had a score between 0 (no raters indicated the feature
was present) and 1 (all raters indicated the feature was present) for
each of the 18 analyzed features. Scores closer to 1 indicate high
consensus that the given robot had the particular feature, while
scores closer to 0 indicate high consensus that the given robot

Table 2: Principal Components Loading Matrix, Study 1.

PC 1 PC 2 PC 3 PC 4
Feature Surface Body Facial Mech.
1. Eyelashes .88 -.08 .15 -.04
2. Headhair .85 .05 .03 -.06
3. Skin .83 .07 .07 -.13
4. Genderedness .80 .28 .17 -.12
5. Nose .71 .05 .33 -.05
6. Eyebrows .69 -.19 .38 .02
7. Apparel .68 .28 .07 -.13
8. Hands .12 .93 .06 .02
9. Arms .02 .92 .10 .01
10. Torso .07 .90 .19 .07
11. Fingers .14 .86 .02 .05
12. Legs -.06 .74 -.08 -.23
13. Face .28 .14 .90 .02
14. Eyes .14 -.02 .88 -.01
15. Head .13 .49 .73 .03
16. Mouth .48 .05 .57 -.07
17. Wheels -.13 -.09 .01 .92
18. Treads/Tracks -.18 .06 -.01 .91
Eigenvalue 4.67 4.30 2.81 1.79
% Variance 25.93 23.88 15.62 9.93
Subscale Cronbach’s α .89 .93 .83 .82
Note: PC 1: Surface Look, PC 2: Body-Manipulators, PC 3: Facial Features, PC 4:
Mechanical Locomotion. Subscales derived from features with loadings in bold.

did not have that feature; scores closer to 0.5 indicate that raters
disagreed over whether the given robot had that feature.

Detailed documentation of each robot’s feature-present scores
can be downloaded from our ABOT Database website.

4.2.3 Discovery of appearance dimensions. Weexaminedwhether
the 18 remaining appearance features were organized into cor-
related bundles by conducting a Principal Components Analysis
(PCA) on the feature-present scores across 198 robots. The PCA
yielded four high-level dimensions (principal components) that had
eigenvalues greater than 1 and together explained 75.36% of the to-
tal variance. After Varimax rotation, Component 1 revealed strong
loadings (> .50) for seven surface features that are most commonly
seen in androids (eyelashes, head hair, skin, genderedness, nose,
eyebrows, and apparel). Component 2 revealed strong loadings
for five features characterizing a human-like body and manipula-
tors (hands, arms, torso, fingers, and legs). Component 3 revealed
strong loadings for four features characterizing a human-like face
(face, eyes, head, and mouth). Finally, Component 4 revealed strong
loadings for two features characterizing a robot’s mechanical lo-
comotion (wheels and treads/tracks). These components and the
loadings of each of the features are shown in Table 2.

4.2.4 Component scores and creation of subscales. The PCA in
Study 1 yielded four appearance dimensions (i.e., feature bundles),
which we labeled Surface Look, Body-Manipulators, Facial Fea-
tures, and Mechanical Locomotion. To locate each robot in this
four-dimensional space, we computed two measures. The first con-
sists of the four “principal component scores” calculated using the
regression method in SPSS version 24 (see [13]). Each component
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score reflects a weighted linear combination of all 18 feature scores,
with precise weights (factor coefficients) assuring that the compo-
nents are uncorrelated. A second, more interpretable measure is the
“subscale scores,” which we computed by averaging feature-present
scores of those features that loaded highly on each respective di-
mension (the bold-faced items in Table 2). Because feature-present
scores range from 0 to 1, the resulting four subscale scores also
range from 0 (none of the defining features for this dimension were
present) to 1 (all defining features were present).

Overall, the subscale scores intuitively describe how strongly a
robot embodies each of the four appearance dimensions. To evalu-
ate how well they correlated with the regression-based component
scores, we calculated Pearson’s correlation coefficients between
them for all four dimensions. The results confirmed that the sub-
scales captured the original four principal components very well
(Surface Look, r = .96, p < .001; Body-Manipulators, r = .99, p < .001;
Facial Features, r = .92, p < .001; Mechanical Locomotion, r = .98, p
< .001). Consequently, the easily calculable and interpretable sub-
scale scores are practically equivalent to component scores derived
from the entire set of features. Thus, we recommend calculating
and reporting them as an efficient method to summarize any given
robot’s appearance on four distinct dimensions.

4.3 Discussion
In Study 1, we surveyed the broad landscape of anthropomorphic
robots contained in the ABOT Database and documented people’s
judgments of the presence of appearance features in each robot.
Based on systematic correlations among these appearance features,
we were able to identify four dimensions of human-like robot ap-
pearance: (1) Surface Look, (2) Body-Manipulators, (3) Facial Fea-
tures, and (4) Mechanical Locomotion. Together, these four dimen-
sions accounted for three-fourths of the total variance among the
18 individual features. Selecting the highest-loading features of
each component, we computed parsimonious subscale scores that
mark each robot’s standing on the four dimensions and thus offer a
precise and quantitative profile of a robot’s human-like appearance.

Our next goal was to demonstrate the psychological relevance of
the appearance dimensions by showing how they constitute overall
impressions of human-likeness.

5 STUDY 2: PREDICTING PHYSICAL
HUMAN-LIKENESS

In Study 2, we assessed people’s overall judgments of robots’ human-
likeness and examined how well these judgments are predicted
by the four appearance dimensions discovered in Study 1 and by
specific appearance features. We thus identified which appearance
dimensions best characterize general human-likeness impressions,
bringing more clarity to the vague concept of human-likeness. In
addition, we created a tool that allows researchers to predict how
human-like a new robot would be perceived by laypeople based on
the presence of appearance features.

5.1 Method
5.1.1 Participants. 100 participants entered into this study, but

data for two participants were lost due to Internet connection is-
sues. Thus, we analyzed data from 98 participants (48 males, 50

females) with ages ranging from 19 to 64 (M = 33.42, SD = 9.75).
Participants completed the study via mTurk in exchange for $1.00
in compensation.

5.1.2 Overall human-likeness measure. For each robot, approx-
imately 25 participants were assigned to judge how physically
human-like the robot appeared overall. Participants provided their
judgment by dragging a slider to indicate where each robot fell on
a continuum between “Not human-like at all” (left-most point of
the slider’s scale) to “Just like a human” (right-most point of the
slider’s scale). The chosen slider position was then converted into
a number ranging from 0 (Not human-like at all) to 100 (Just like a
human).

5.1.3 Design. As in Study 1, participants were randomly as-
signed to one of the four blocks of 50 images of robots, along with
images of eight humans and eight featureless smart home devices.
In total, participants rated images of 66 entities for “how much
each entity in the photograph looks like a human in its physical
appearance.” We planned to assign 25 judges to each robot in each
block and thus predetermined a total sample of N = 100.

5.1.4 Procedure. After reviewing the informed consent form,
participants read instructions on how to use the slider scale to judge
the human-like physical appearance of the 66 entities. They were
given as much time as needed to make each judgment. Halfway
through rating the images, participants received a 10-second break.
At the end of the study, participants were asked to fill out a brief
demographic questionnaire identical to that in Study 1. Once com-
plete, participants were provided with an mTurk confirmation code
to receive their payment. The entire study took approximately 5
minutes to complete.

5.2 Results
5.2.1 Data screening and rater reliability. In data screening, only

2 of the 98 raters had to be excluded. One gave arguably incorrect
responses for most featureless machines (human-likeness scores
of 30 or more) and one provided uniform responses (slider at 1) to
nearly all robots. Inter-rater reliability of human-likeness scores
was assessed via the intra-class correlation ICC(2,1), which aver-
aged 0.60 across the four blocks. Further, correlations between each
rater’s judgments and the average of the remaining raters’ judg-
ments, riG , averaged .81 across the four blocks. Thus, the group
averages, used in subsequent analyses, were highly representative
of any individual raters’ judgments.

5.2.2 Human-likeness scores. We then averaged the scores across
raters to provide an overall physical human-likeness score for each
robot. These average human-likeness scores across all the robots in
our database ranged from 1.44 to 96.46, withM = 33.26, SD = 18.97.
This distribution confirms that the ABOT database includes a wide
spectrum of human-like robots.

5.2.3 Predicting physical human-likeness from feature-present
scores. In order to predict robots’ human-likeness with a feature-
based approach, we used the robots’ 18 individual feature-present
scores as predictors of their overall human-likeness scores. A re-
gression model using all 18 features explained 88.8% of the total
variance of overall human-like scores (R = .94, F (18, 179) = 78.5, p <
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.001). Given the impressive predictive power of this linear model,
we built a Human-Likeness Estimator from it, which can be accessed
from our ABOT Database website. This estimator serves to approxi-
mate how human-like a robot will be perceived by laypeople based
on the presence or absence of its appearance features.

Finally, in order to identify a small number of physical features
that as a minimal group most effectively predict the perceived
human-likeness of a robot, we conducted a stepwise forward re-
gression analysis with the 18 features as predictors. The top three
predictors were torso (rsemi−par tial = .31), genderedness (rsp =
.44), and skin (rsp = .23), all ps < .001, together explaining 78.4%
of the variance of overall human-likeness judgments, F (3, 194) =
234.06, p < .001.

5.2.4 Predicting physical human-likeness from appearance di-
mensions. Next we conducted two multiple regression analyses
to examine how well people’s overall human-likeness judgments
can be predicted from the four high-level appearance dimensions
discovered in Study 1.

The first analysis used the four regression-based principal com-
ponent scores as predictor variables. This model explained 82.5%
of the variance in human-likeness, F (4, 193) = 227.0, p < .001. The
strongest predictors were Surface Look (with 37.2% explained vari-
ance, rsp = .61) and Body-Manipulators (with 36.0% explained vari-
ance, rsp = .60), but each of the other components also added unique
explained variance: 5.7% for Facial Features (rsp = .24), and 3.6% for
Mechanical Locomotion (rsp = -.19) (all ps < .001). Further, cross
validation bootstrapping procedures revealed that the unique ex-
plained variances in the overall model and those in bootstrapped
samples of the model only differed from one another by an aver-
age of 1.5% for Surface Look, 3.4% for Body-Manipulators, 0.7% for
Facial Features, and 0.3% for Mechanical Locomotion.

The second analysis used the four subscale scores as predictors.
This model explained 81.5% of the variance in human-likeness,
F (4, 193) = 212.4, p < .001. The strongest predictor was the Body-
Manipulators dimension with 28% of variance explained (rsp = .53,
p < .001). Other dimensions also added unique explained variance:
Surface Look explained 19% variance (rsp = .44, p < .001), Mechan-
ical Locomotion explained 1.7% (rsp = -.13, p < .001), and Facial
Features explained 0.5% (rsp = .07, p = .025). Similar to above, the
difference between the explained variance in the bootstrap model
and the full model was small: average difference in unique explained
variance was 2.8% for Body-Manipulators, 0.5% for Surface Look,
0.3% for Facial Features and 0.1% for Mechanical Locomotion. More
information about our cross validation estimates can be found on
the ABOT Database website.

5.3 Discussion
In Study 2, we surveyed laypeople’s perceptions of robots’ overall
physical human-likeness and showed that this overall judgment can
be strongly predicted from either specific individual appearance
features (especially torso, genderedness, and skin) or the underlying
four appearance dimensions (especially Body-Manipulators and
Surface Look). At a theoretical level, the strength of this prediction
suggests that the broad human-likeness concept can be decomposed
into meaningful appearance dimensions. At the practical level, the
strength of this prediction allowed us to build a Human-likeness

Estimator that can be used to quickly estimate how human-like a
new robot will be perceived.

6 GENERAL DISCUSSION
The psychological effects of robots’ appearance, and especially
human-like appearance, form a cornerstone of HRI research. De-
spite the topic’s broad appeal in scholarship and public perception,
a systematic understanding of what human-likeness in robots re-
ally is has been lacking. Our research has aimed to illuminate the
concept of human-likeness by taking a feature-based approach—
decomposing the broad concept into specific appearance features
and identifying underlying high-level dimensions. And by compil-
ing all the images and data we collected into a publicly accessible
database, we hope to pave the way for more systematic, gener-
alizable, and reproducible research on robots’ anthropomorphic
appearance and its effects on human-robot interaction.

6.1 Theoretical Contributions
In Study 1, we asked laypeople to judge the presence of human-like
appearance features in 200 robots, and nearly all these features
were assessed with good inter-rater reliability. More importantly,
the features co-occurred in robots in systematic ways and revealed
four underlying appearance dimensions: Surface Look (e.g., gender,
skin, eyelashes) Body-Manipulators (e.g., torso, arms, hands), Facial
Features (e.g., head, eyes), and Mechanical Locomotion (i.e., wheels,
treads/tracks). These dimensions are not the result of people’s mere
assumptions about the features that co-occur in robots, because
people never made judgments about more than one feature at a
time. Instead, the dimensions reflect underlying co-occurrences of
features in the actual robots that have been built for research or
commercial purposes. Thus, with just four subscale scores (averaged
feature-present scores on the four appearance dimensions) we can
describe the distinct profiles of hundreds of extant anthropomorphic
robots.

In Study 2, we showed that robots’ appearance profiles obtained
in Study 1 could predict their perceived overall physical human-
likeness. The strong predictive power of the four appearance di-
mensions (more than 80% explained variance) reveals that people’s
impression of a robot’s human-likeness is a result of variations in
a few fundamental dimensions of appearance. In particular, the
dimensions of Surface Look and Body-Manipulator strongly con-
tributed to robots’ perceived human-likeness, and facial features
and (the absence of) mechanical forms of locomotion made weaker
but still notable contributions.

The powerful impact of these appearance dimensions on overall
human-likeness perceptions is unlikely to be a mere physical co-
incidence; rather, it conveys important psychological expectations
people have of robots—and human-like robots in particular. The
Body-Manipulators dimension reflects people’s expectations that
robots interact with the physical environment in the same manner
as humans—and because many of the objects in the physical world
have been designed for human biological manipulators, robots may
need those manipulators as well. The dimension of Facial Features
reflects people’s expectations that robots socially interact and effec-
tively communicate with humans. That is, even though human-like
heads, eyes, and mouths on robots do not serve biological functions
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as with humans (e.g., seeing, eating, speaking), they serve critical
communicative functions such as facilitating joint attention via
gaze orientation [23] or providing non-verbal responses by nod-
ding and shaking one’s head [2]. Finally, features in the Surface
Look dimension (e.g., skin, apparel, genderedness) are less relevant
to a robot’s task-specific capacities but do mimic the human veneer,
engendering familiarity, comfort, and perhaps trustworthiness [22].

6.2 Practical Contributions
With the ABOT Database, we are making publicly available a repos-
itory of standardized, high-quality images of anthropomorphic
robots, which surveys the wide variety of anthropomorphic robots
extant in the world today. Each robot now has an appearance pro-
file, summarized by their appearance feature scores and dimension
scores, and we intend to create such profiles for new robots that
will be added to the database. Moreover, each robot has an overall
human-likeness score, and we intend to collect other psychological
characteristics associated with each robot in the near future.

Using the ABOT Database, researchers can compare different
robots across previous studies and draw more detailed conclusions
about the psychological effects of specific aspects of human-likeness.
Moreover, using the Human-Likeness Estimator, researchers and
designers can effectively describe new or planned robots on impor-
tant appearance features and make reasonable predictions about
laypeople’s perceptions of those robots’ overall human-likeness. In
addition, our research may offer a general recipe to build robots that
do or do not appear human-like. For example, to create robots that
should appear human-like, designers may focus on adding more
features in the Surface Look dimension (gender, skin, eyelashes);
conversely, to reduce human-likeness, designers may best install
treads or wheels rather than legs.

6.3 Limitations and Future Directions
There are several limitations to the current research. First, the in-
clusion of robots in the ABOT Database is constrained by both
our knowledge about extant robots and our search procedures. As
a result, despite our efforts to create the most comprehensive an-
thropomorphic robot collection, we are aware that the database
presents only a subset of anthropomorphic robots ever created.
Furthermore, new robots are continuously being developed in re-
search laboratories and released to the commercial markets, and
their designs are becoming increasingly diverse. Therefore, we in-
vite other researchers and designers to inform us of the robots that
are currently missing in this database, and we plan to update and
re-run analyses as the database grows.

In addition, although we identified a considerable number of
appearance features that constitute four high-level dimensions and
predict overall human-likeness, we think the number and kinds
of features to describe robots may be refined. For example, we
found it difficult to identify ears, lips, or eyelids on the full range of
current human-like robots. We cannot rule out that such features
might influence overall perceptions of human-likeness, nor can we
anticipate their impact on perceptions of other robot characteristics.
Perhaps by subdividing the robot sample or working with more
detailed 360◦ images or videos, even the most subtle features may
become available for research.

Second, our analyses of the current dataset are straightforward,
but additional findings may be uncovered with advanced statistical
analyses. Thus, we encourage other researchers to use the ABOT
Database to probe the nuances of human-likeness in robots. For
example, while the PCA ensured that the four principal components
are linearly independent, the subscales are somewhat correlated
and may even be correlated non-linearly, indicating additional im-
portant relationships among these dimensions. As another example,
several feature-present scores are non-independent, as the pres-
ence of some features (e.g., eyebrows) presupposes other features
(e.g., eyes). Analyzing conditional probabilities among features will
likely reveal a hierarchical structure of various appearance features
and further refine our current decomposition of human-likeness.

Third, we asked participants only to diagnose whether certain
classes of appearance features were present or absent in robots; our
research did not take into account variations in the appearance of
specific features. For instance, one can imagine that the same feature
(e.g., eyes) could be represented in different ways (e.g., biologically
realistic, abstract, or cartoonish) [12]. It is possible that variations
in these features may also influence perceptions of human-likeness.

Finally, our assessment focused solely on investigating how phys-
ically human-like a robot might be perceived given static images.
There are many others ways in which robots’ human-likeness can
be expressed, such as through dynamic movement, speech, non-
verbal gestures, or emotional expressions. Therefore, how static
appearance features of robots may interact with such dynamic
characteristics is a meaningful future research direction.

7 CONCLUSION
The human-like appearance of robots is a centerpiece of research
in the HRI domain. However, defining human-like appearance in
robots has remained elusive. This research provides a systematic in-
vestigation of the human-like features present in anthropomorphic
robots, uncovers high-level structures interconnecting those fea-
tures, reveals their relationship to robots’ overall physical human-
likeness, and offers methodological tools for determining if a par-
ticular robot will be considered human-like in its appearance.

8 ACCESSING THE ABOT DATABASE
The ABOT Database is available at http://www.abotdatabase.info/

ACKNOWLEDGMENTS
The authors thank Salomi Aladia, Mckenna Cisler, Fue Vue, Broder-
ick Allan, and Maya Menefee for their contributions to this project
as well as all the researchers who responded to our email requests
and contributed their robot images to our database. This work is
supported by Office of Naval Research grant #N00014-14-1-0144 and
by the Brown University Humanity-Centered Robotics Initiative.
Daniel Ullman is supported by the Department of Defense (DoD)
through the National Defense Science & Engineering Graduate
Fellowship (NDSEG) Program.

REFERENCES
[1] Christoph Bartneck, Takayuki Kanda, Omar Mubin, and Abdullah Al Mahmud.

2009. Does the design of a robot influence its animacy and perceived intelligence?
International Journal of Social Robotics 1, 2 (2009), 195–204.

Session Tu-2: Best Paper Nominees I HRI’18, March 5-8, 2018, Chicago, IL, USA

112



[2] Cynthia Breazeal, Cory D Kidd, Andrea Lockerd Thomaz, Guy Hoffman, and Matt
Berlin. 2005. Effects of nonverbal communication on efficiency and robustness
in human-robot teamwork. In Intelligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ International Conference on. IEEE, 708–713.

[3] Elizabeth Broadbent, Vinayak Kumar, Xingyan Li, John Sollers 3rd, Rebecca Q
Stafford, Bruce A MacDonald, and Daniel M Wegner. 2013. Robots with display
screens: A robot with a more humanlike face display is perceived to have more
mind and a better personality. PloS One 8, 8 (2013), e72589.

[4] Judee K Burgoon, Joseph A Bonito, Bjorn Bengtsson, Carl Cederberg, Magnus
Lundeberg, and L Allspach. 2000. Interactivity in human–computer interaction: A
study of credibility, understanding, and influence. Computers in Human Behavior
16, 6 (2000), 553–574.

[5] Tyler J Burleigh, Jordan R Schoenherr, and Guy L Lacroix. 2013. Does the uncanny
valley exist? An empirical test of the relationship between eeriness and the human
likeness of digitally created faces. Computers in Human Behavior 29, 3 (2013),
759–771.

[6] Ted Byrt, Janet Bishop, and John B Carlin. 1993. Bias, prevalence and kappa.
Journal of Clinical Epidemiology 46, 5 (1993), 423–429.

[7] Álvaro Castro-González, Henny Admoni, and Brian Scassellati. 2016. Effects of
form and motion on judgments of social robots’ animacy, likability, trustworthi-
ness and unpleasantness. International Journal of Human-Computer Studies 90
(2016), 27–38.

[8] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement 20, 1 (1960), 37–46.

[9] Maartje MA de Graaf, Somaya Ben Allouch, and Jan AGM van Dijk. 2017. Long-
term evaluation of a social robot in real homes. Interaction Studies 17, 3 (2017),
462–491.

[10] David De Vaus. 2002. Analyzing social science data: 50 key problems in data
analysis. Sage.

[11] Carl F DiSalvo, Francine Gemperle, Jodi Forlizzi, and Sara Kiesler. 2002. All
robots are not created equal: The design and perception of humanoid robot heads.
In Proceedings of the 4th Conference on Designing Interactive Systems: Processes,
Practices, Methods, and Techniques. ACM, 321–326.

[12] Brian R Duffy. 2003. Anthropomorphism and the social robot. Robotics and
Autonomous Systems 42, 3 (2003), 177–190.

[13] Ryne Estabrook andMichael Neale. 2013. A comparison of factor score estimation
methods in the presence of missing data: Reliability and an application to nicotine
dependence. Multivariate Behavioral Research 48, 1 (2013), 1–27.

[14] Neta Ezer. 2008. Is a robot an appliance, teammate, or friend? Age-related differences
in expectations of and attitudes towards personal home-based robots. Georgia
Institute of Technology.

[15] Francesco Ferrari, Maria Paola Paladino, and Jolanda Jetten. 2016. Blurring
human–machine distinctions: Anthropomorphic appearance in social robots as
a threat to human distinctiveness. International Journal of Social Robotics 8, 2
(2016), 287–302.

[16] Julia Fink. 2012. Anthropomorphism and human likeness in the design of robots
and human-robot interaction. In International Conference on Social Robotics.
Springer, 199–208.

[17] Kilem Li Gwet. 2008. Computing inter-rater reliability and its variance in the
presence of high agreement. Brit. J. Math. Statist. Psych. 61, 1 (2008), 29–48.

[18] Kerstin S Haring, David Silvera-Tawil, Tomotaka Takahashi, Katsumi Watanabe,
and Mari Velonaki. 2016. How people perceive different robot types: A direct
comparison of an android, humanoid, and non-biomimetic robot. In Knowledge
and Smart Technology (KST), 2016 8th International Conference on. IEEE, 265–270.

[19] Takanori Komatsu, Rie Kurosawa, and Seiji Yamada. 2012. How does the differ-
ence between users’ expectations and perceptions about a robotic agent affect
their behavior? International Journal of Social Robotics 4, 2 (2012), 109–116.

[20] Sören Krach, Frank Hegel, Britta Wrede, Gerhard Sagerer, Ferdinand Binkofski,
and Tilo Kircher. 2008. Can machines think? Interaction and perspective taking
with robots investigated via fMRI. PloS One 3, 7 (2008), e2597.

[21] Bertram F Malle, Matthias Scheutz, Jodi Forlizzi, and John Voiklis. 2016. Which
robot am I thinking about?: The impact of action and appearance on people’s
evaluations of a moral robot. In The Eleventh ACM/IEEE International Conference
on Human Robot Interaction. IEEE Press, 125–132.

[22] Maya B Mathur and David B Reichling. 2016. Navigating a social world with
robot partners: A quantitative cartography of the Uncanny Valley. Cognition 146
(2016), 22–32.

[23] Andrew N Meltzoff, Rechele Brooks, Aaron P Shon, and Rajesh PN Rao. 2010.
“Social” robots are psychological agents for infants: A test of gaze following.
Neural Networks 23, 8 (2010), 966–972.

[24] Masahiro Mori. 1970. The uncanny valley. Energy 7, 4 (1970), 33–35.
[25] Steffi Paepcke and Leila Takayama. 2010. Judging a bot by its cover: An exper-

iment on expectation setting for personal robots. In Human-Robot Interaction
(HRI), 2010 5th ACM/IEEE International Conference on. IEEE, 45–52.

[26] Elizabeth Phillips, Scott Ososky, Janna Grove, and Florian Jentsch. 2011. From
tools to teammates: Toward the development of appropriate mental models for
intelligent robots. In Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, Vol. 55. SAGE Publications Sage CA: Los Angeles, CA, 1491–
1495.

[27] Elizabeth Phillips, Daniel Ullman, Maartje de Graaf, and Bertram F. Malle. 2017.
What does a robot look like?: A multisite examination of user expectations about
robot appearance. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, Vol. 61. SAGE Publications Sage CA: Los Angeles, CA.

[28] Aaron Powers and Sara Kiesler. 2006. The advisor robot: Tracing people’s
mental model from a robot’s physical attributes. In Proceedings of the 1st ACM
SIGCHI/SIGART Conference on Human-Robot Interaction. ACM, 218–225.

[29] Laurel D Riek, Tal-Chen Rabinowitch, Bhismadev Chakrabarti, and Peter Robin-
son. 2009. Empathizing with robots: Fellow feeling along the anthropomorphic
spectrum. In Affective Computing and Intelligent Interaction and Workshops, 2009.
ACII 2009. 3rd International Conference on. IEEE, 1–6.

[30] Michihiro Shimada, Takashi Minato, Shoji Itakura, and Hiroshi Ishiguro. 2006.
Evaluation of android using unconscious recognition. In Humanoid Robots, 2006
6th IEEE-RAS International Conference on. IEEE, 157–162.

[31] Valerie K Sims, Matthew G Chin, David J Sushil, Daniel J Barber, Tatiana Ballion,
Bryan R Clark, Keith A Garfield, Michael J Dolezal, Randall Shumaker, and
Neal Finkelstein. 2005. Anthropomorphism of robotic forms: A response to
affordances?. In Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, Vol. 49. SAGE Publications Sage CA: Los Angeles, CA, 602–605.

[32] Jan-Philipp Stein and Peter Ohler. 2017. Venturing into the uncanny valley
of mind—The influence of mind attribution on the acceptance of human-like
characters in a virtual reality setting. Cognition 160 (2017), 43–50.

[33] Anna Stenzel, Eris Chinellato, Maria A Tirado Bou, Ángel P del Pobil, Markus
Lappe, and Roman Liepelt. 2012. When humanoid robots become human-like
interaction partners: Corepresentation of robotic actions. Journal of Experimental
Psychology: Human Perception and Performance 38, 5 (2012), 1073.

[34] Leila Takayama, Wendy Ju, and Clifford Nass. 2008. Beyond dirty, dangerous
and dull: What everyday people think robots should do. In Proceedings of the 3rd
ACM/IEEE International Conference on Human-Robot Interaction. ACM, 25–32.

[35] Astrid Marieke von der Pütten and Nicole C Krämer. 2012. A survey on robot
appearances. In Proceedings of the 7th Annual ACM/IEEE International Conference
on Human-Robot Interaction. ACM, 267–268.

[36] Eva Wiese, Agnieszka Wykowska, Jan Zwickel, and Hermann J Müller. 2012. I
see what you mean: How attentional selection is shaped by ascribing intentions
to others. PloS One 7, 9 (2012), e45391.

[37] Nahathai Wongpakaran, Tinakon Wongpakaran, Danny Wedding, and Kilem L
Gwet. 2013. A comparison of Cohen’s Kappa and Gwet’s AC1 when calculating
inter-rater reliability coefficients: A study conducted with personality disorder
samples. BMC Medical Research Methodology 13, 1 (2013), 61.

[38] Xuan Zhao, Corey Cusimano, and Bertram F Malle. 2016. Do people sponta-
neously take a robot’s visual perspective?. In Human-Robot Interaction (HRI), 2016
11th ACM/IEEE International Conference on. IEEE, 335–342.

Session Tu-2: Best Paper Nominees I HRI’18, March 5-8, 2018, Chicago, IL, USA

113


	Abstract
	1 Introduction
	2 Background
	2.1 Anthropomorphic Appearance as a Cornerstone of HRI Research
	2.2 The Need for a Systematic Approach and Standardized Measures

	3 The ABOT Database
	3.1 Inclusion of Robots
	3.2 Image Selection and Editing

	4 Study 1: Presence of Human-like Features and High-Level Dimensions
	4.1 Method
	4.2 Results
	4.3 Discussion

	5 Study 2: Predicting Physical Human-Likeness
	5.1 Method
	5.2 Results
	5.3 Discussion

	6 General Discussion
	6.1 Theoretical Contributions
	6.2 Practical Contributions
	6.3 Limitations and Future Directions

	7 Conclusion
	8 Accessing the ABOT Database
	Acknowledgments
	References



